
RB-MPW Plug-ins Kit

Peter Robinson<peter@pmpfr.co.uk>

version 1.1b3 (January 14, 2003)

Introduction

This kit allows an MPW user to build plug-ins suitable
for use with REALbasic. REAL Software has never
supported the use of MPW to compile REALbasic plug-
ins, but it’s perfectly possible1 to do so, and that’s where
this kit comes in.

In older versions of the official REALbasic Plug-ins
SDK, it was necessary to modify some of the SDK files
to use MPW. In version 4.5a1, REAL Software incorpo-
rated my changes and this is now no longer necessary.
If, for some reason, you wish to compile an older ver-
sion of the SDK, this kit includes aStreamEdit script
and some header files in the folder ‘Deprecated ’ to
allow this. However, it is recommended that you use
SDK version 4.5a1 or newer,2 in which case you can
safely throw away the ‘Deprecated ’ folder.

With SDK version 5a1, REAL Software introduced a
new file format for plug-ins. It uses a directory struc-
ture containing standard PEF shared libraries (‘for de-
velopment’) and a proprietary data-fork based file (‘for
deployment’). This change permits the use of plug-ins
in the new Windows version of the REALbasic IDE.

The 5a1 SDK includes an application for converting
resource-based plug-ins to the new format. It should be
straightforward to generate ‘structured directory plug-
ins’ with MPW, and I hope to implement this in future
versions of my RB-MPW Plug-ins Kit. Meanwhile, you
can use REAL Software’s supplied translator to convert
MPW generated plug-ins to the new format.

Acknowledgements

My thanks go to Thomas Tempelmann, without whom
I would not have been able to solve the problem of
static constructors. Thomas has made available aPlugin

1For a real working example of a REALbasic plug-in compiled
with MPW, see my CompfacePlugin, [2].

2At the time of writing, the current REALbasic Plug-ins SDK is
version 5a1. It is compatible with this Kit.

Starter([6]) which addresses some of the shortcomings
of the official SDK for CodeWarrior users.

What you need

REALbasic You need a working copy of REALbasic
with which to test the plug-ins. I am using 4.0.1,
but other versions should work fine. I have suc-
cessfully run MPW-built plug-ins under REALba-
sic 3.2.1, 3.5.1, 4.0.1 and 4.5fc4.

The official SDK This kit works in conjunction with
the official REALbasic Plug-ins SDK; it does not
replace it. If you have made changes to the offi-
cial SDK (especially to its directory structure or
file names) then it is best to use a fresh copy.

I recommend that you use REALbasic Plug-ins
SDK version 4.5a1 or newer,2 although it is pos-
sible to use older versions.

MPW You will need a working installation of MPW. It
should includePPCLink version 1.5.2 or newer.

Getting started

Before using this kit, you need to download the RE-
ALbasic Plug-ins SDK and you need a working instal-
lation of REALbasic itself (to test the plug-ins). Most
of this manual assumes that you are using SDK version
4.5a1 or newer; if you wish to use an older version of
the SDK, see the section ‘Older SDKs’.

You should fix the ‘REALbasic ’ alias in the RB-
MPW Plug-ins Kit so that it points to your copy of the
REALbasic application folder (at the moment, it points
to this folders onmyhard drive!).

You should also place the RB-MPW Plug-ins Kit
folder into the official SDK folder. If you do these two
things (and don’t rename the alias!) you won’t need to
modify the MPW makefiles included in this kit.

1

When you’ve fixed the alias and put the Kit in the
right place, launch MPW, change its working direc-
tory to the RB-MPW Plug-ins Kit folder and execute
the supplied script called ‘BuildPlugins ’. That will
build the four supplied example plug-ins from the SDK,
together with my own example plug-in. It makes no at-
tempt at building the obsolete plug-ins.

If the compilation was successful, you can load
into REALbasic the test projects that came with the
official REALbasic Plug-ins SDK, and see if every-
thing worked. You can also try my own included
test projects, named ‘MyExample Project ’ and
‘BoxControl/TestPlugin Project ’.

The supplied project ‘MyExample Project ’ is
provided for testing ‘MyPlugin ’, which is built from
‘MyExample.cpp ’. It is for testing whether static
constructors and destructors get called correctly, and
it uses calls toDebugStr() to do so. If you don’t
have a MacsBug installed, this may cause a ‘crash’
when launching REALbasic, in which case there is
a switch available in ‘MyExample.cpp ’ to turn off
the debugger breaks. Alternatively, you can remove
‘MyPlugin ’ from the REALbasic ‘Plugins ’ folder.

Apart from dropping into MacsBug whenever any-
thing happens in the plugin, ‘MyPlugin ’ should return
the number 25 to ‘MyExample Project ’, indicat-
ing that everything’s working.

The rest of this manual contains a detailed descrip-
tion of this kit, including its limitations, and how it
works. While you don’t have to read it in order to use
this kit, it may come in handy if things go wrong.

Please send any comments, bug reports or sugges-
tions by email to<peter@pmpfr.co.uk> .

Files in this Kit

The following files should have been included with this
kit:

BuildPlugins An MPW Shell script that uses the
two supplied makefiles ‘Examples.make ’ and
‘Minimal.make ’ to build all the example plug-
ins supplied in the official SDK.

Examples.make A makefile for building all the ex-
ample plug-ins supplied in the REALbasic Plug-
ins SDK.

Minimal.make A simpler makefile for building my
own minimal example.

MyExample.cpp The source code for my minimal
example plug-in.

MyExample Project A very simple REALbasic
project that tests my minimal example plug-in.

BoxControl/TestPlugin Project A REAL-
basic project that tests the two supplied plug-ins
‘BoxPlugin ’ and ‘TestPlugin ’.

Objects A folder ready to receive the object files
produced by the compiler.

REALbasic An alias which you should replace by
one of the same name pointing to the REALba-
sic folder—the folder containing the REALbasic
application itself.

Read Me A brief text file introducing this kit.

Deprecated A folder containing the following files
for use with SDK versions 4a1 or older:

This kit must be able to find the files in the official
SDK. Therefore, it is expected that the kit is inside the
SDK folder.

This kit requires that the official SDK is unmodified.
In particular, you should not rearrange the directory
structure of the SDK, or this kit may not work without
modification. If you have made changes to the official
SDK, it is probably best to install a fresh copy.

In order to copy any built plug-ins into REALbasic’s
‘Plugins ’ folder, the alias file ‘REALbasic ’ should
be fixed or replaced by an alias of the same name so
that it points to the folder containing the REALbasic
application itself.

Using the Kit

Once the two alias files have been fixed as described
above, the kit is ready to be used. The makefiles are
designed to be run from MPW’s current working direc-
tory, so you should execute aDirectory command to set
this to the RB-MPW Plug-ins Kit folder.

Using ‘Examples.make ’

The makefile ‘Examples.make ’ is used to build the
example plug-ins supplied in the official SDK, and my
minimal example. It usesMakeDepend to generate
much of its dependency information, but this can be au-
tomated by building the high level target ‘Deps’.

2

Because the five plug-ins have so much in common,
the makefile is designed for a two-pass strategy. There
are high level targets that themselves generateMake
commands for the lower level targets, in the process
defining Make variables that contain information rel-
evant to the particular plug-in.

When these lower levelMake commands are exe-
cuted, they generate the actual build commands used
to compile the plug-ins. The makefile itself includes
extensive comments that describe how it works.

The following script may be used to build all the
plug-ins:

Make Deps -f Examples.make > Cmds
Cmds
Make Plugins -f Examples.make > Cmds
Cmds > Cmds2; Cmds2

The file ‘BuildPlugins ’ is an MPW Shell script that
does this,echoing its progress to the MPW Worksheet.
Therefore, after changing directory to the RB-MPW
Plug-ins Kit directory, simply executeBuildPlugins.

Using ‘Minimal.make ’

The makefile ‘Minimal.make ’ is a much simpler af-
fair than ‘Examples.make ’. Since it only builds one
plugin (my minimal example) it has no need of a two-
pass strategy, and can therefore be used in the usual
way. As before, much of the required dependency in-
formation is generated byMakeDepend from the tar-
get ‘Deps’.

The script

Make Deps -f Minimal.make > Cmds
Cmds
Make MyPlugin -f Minimal.make > Cmds
Cmds

will build my minimal example plug-in from the file
‘Minimal.make ’.

The Build Process

REALbasic plug-ins are PEF containers stored in code
resources (see the the REALbasic Plug-ins SDK doc-
umentation for more information). This is not a natu-
ral format produced by MPW (or CodeWarrior for that
matter), and the build process is slightly complicated as
a result. However, the MPW scriptMakePPCCodeR-
src comes in very useful.

This section does not attempt to describe the work-
ing of the makefiles themselves; instead, it describes
the build commands that they generate, and the reason-
ing behind them. To understand how the actual make-
files work, you should see the extensive commenting
included within them.

This kit does not attempt to build plug-ins for 68k or
Windows (see the section ‘Limitations’). It builds only
PPC and Carbon plug-ins.

Compiling

There is nothing unusual about how plug-in source files
are compiled, but the command line options passed to
MrC andMrCpp are summarised here.

We suppress unused parameter warnings (-w 35)
and define symbols on the command line that indicate
whether it’s a Carbon or PPC build (-d ...). When
compiling C source files, we require that function pro-
totypes are given and turn ANSI conformance on (-
proto strict -ansi on).

The compiler must search for header files in folders
in the official SDK, so we set this up, by passing ap-
propriate pathnames with the-i option. From version
1.1b1 of this kit, the makefiles uses a precompiled head-
ers. This is built as required by the makefile, and we tell
MrCpp to load it using the-loadc option. There is a
different precompiled header for Carbon and PowerPC
builds.

As well as compiling the source code from each plug-
in, ‘PluginMain.cpp ’ must also be compiled.

The convention used is that object files for PPC
builds have the extension ‘.x ’, while those for Carbon
builds use ‘.y ’.

Linking

The process of linking is a little more delicate—there
are a few things that can be done incorrectly, which
would prevent REALbasic from loading a plug-in.

There is nothing unusual about the selection of li-
braries to link against. The usual warnings about link-
ing only against Carbon safe libraries for Carbon builds
and vice-versa still apply. To use the default PEF
initialization and termination routines whenever pos-
sible, you should link against ‘MrCPlusLib.o ’ and
‘PPCCRuntime.o ’.

In addition to the libraries, the object files coming
from each source file must be linked (including that
from the SDK’s ‘PluginMain.cpp ’).

3

Options are passed toPPCLink allowing it to use
temporary memory for linking and not to emit warn-
ings about duplicate symbols (-mf -d). This is not so
important.

What is important is to understand the limitations of
the kind of target we’re building. In the case of PPC
plug-ins, we must build what is known as an accel-
erated resource with a usage constant that identifies it
as a ‘drop-in addition’ (as opposed to an application,
shared library, stub library etc.). Accelerated resources
are PowerPC PEF containers stored in a resource, but
with an extra header which allows it to be called as a
direct replacement for an old style 68k code resource,
without making changes to the caller.

Unfortunately, this kind of ‘accelerated resource’ is
not allowed to use PEF termination routines, nor may
it use ‘packed data’. If you do accidentally allow it to
specify a PEF termination routine, REALbasic will be
unable to load the plug-in—it will produce a Code Frag-
ment Manager error -2824 in MacsBug (or most likely
crash if the debugger is not installed).

Carbon plug-ins are not called accelerated resources
because they don’t include the extra header (and so they
don’t have a usage type either). Therefore they do not
have this limitation, and we can allowPPCLink to use
the default initialisation and termination routines.

In practise, the way to achieve all this is to give
PPCLink the following arguments-m main -term
none -packdata off and-xm dropin for PPC
plug-ins, and-m main -packdata off for Car-
bon plug-ins. Note thatPPCLink version 1.5.2 or
newer is required3 to set the PEF usage constant to that
of a drop-in addition (-xm -dropin), but should be
able to achieve the same effect by usingModPEF and
an older version ofPPCLink instead.

For more information on the PPC termination routine
problem, see the section ‘Limitations’. For information
about PEF containers and PPC code resources, see [8].

Making the Code Resources

The MPW scriptMakePPCCodeRsrc is used to con-
vert data fork based PEF containers into PPC code re-
sources. The resource types used are ‘PLPC’ for PPC
plug-ins and ‘PLCN’ for Carbon plug-ins, and it is usual
to give the code resources IDs of 128. The plug-ins
should have a file type of ‘RBPl ’ and a creator of

3I believe that neither REALbasic nor the CFM actually check the
usage constant, so it should be possible to omit the-xm dropin ,
and hence to use an older version ofPPCLink.

‘RBv2’. All this is accomplished by specifying for in-
stance-rt PLCN=128 -t RBPl -c RBv2 as pa-
rameters toMakePPCCodeRsrc, to make a PPC plug-
in resource.

The crucial difference between Carbon and PPC
plug-in resources is that while PPC plug-ins should be-
gin with a header describing the main entry point, Car-
bon plug-ins are just raw PEF containers. Therefore, we
specify-rawpef as an option for Carbon plug-ins but
instead-procinfo 193 for PPC plug-ins. The given
number, 193, describes the signature of the main en-
try point (which ismain() in ‘PluginMain.cpp ’).
REALbasic will callmain() with a single 4 byte func-
tion pointer to its ‘resolver’ function—this allows the
plug-in to call routines provided by REALbasic—and
expects no return value.

Examination of the header fileMixedMode.h re-
veals how to calculate the ‘magic’ number 193 in the
following C code snippet:

pluginMainProcInfo = kCStackBased
| RESULT_SIZE(SIZE_CODE(0))
| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(4));

which (see ‘MixedMode.h ’!) evaluates to

pluginMainProcInfo = 1
| 0 << 4
| 3 << ((4+2) + (1-1)*4);

/* = 1 + 0 + 3<<6 = 193 */

All that remains is to combine the two architectures’
plug-ins into one file usingRez, and including any
plug-in specific resources if there are any.

Limitations

68k and Windows support

The official plug-in SDK is designed for CodeWarrior
and it can build plug-ins for Windows and for 68k Macs.
MPW will never be able to compile for Windows (at
least not with the supplied tools!). Nor have I been
able to get MPW to compile the SDK for 68k Macs,
although this at least should be possible. In any case,
REAL Software have now dropped support for 68k in
the REALbasic application, so the point is moot.

4

Static Constructors and Destructors

Because the official SDK specifies no PEF initialization
or termination routines for its plug-ins, it has difficulty
ensuring that any static constructors or destructors get
called at the appropriate times. In fact, it only manages
to call staticconstructors, and then only for PPC plug-
ins. It calls neither static constructors nor destructors
for Carbon plug-ins and doesn’t call staticdestructors
for PPC plug-ins.

The situation with this kit is somewhat better. It uses
PEF initialisation and termination routines where it can,
so it manages to call both static constructors and de-
structors for Carbon plug-ins. Unfortunately it can only
call staticconstructors for PPC plug-ins. As in the of-
ficial SDK, no static destructors in PPC plug-ins get
called.

These problems only affect constructors and destruc-
tors of objects storedstatically (for instance global ob-
jects). Any other objects (e.g. objects in local variables,
or objects that get created and destroyed bynew and
delete) are unaffected. Normal (i.e. non-object) global
and local variablesdoget initialised appropriately.

PatchingExitToShell()

There is a solution that would ensure that static destruc-
tors do get called even in PPC plug-ins. The solution
to patchExitToShell() , is due to Thomas Tem-
pelmann who has implemented it in hisPlug-in Starter
([6]).

His solution is that when the plug-in starts up, he in-
stalls a patch onExitToShell() so that when the
host application (either REALbasic itself, or a compiled
REALbasic application) exits, the plug-in gets a chance
to do its clearing up.

Thomas also takes the sensible step of checking
whether the static constructors have been called, and if
not, doing it manually.

It should be possible to use both techniques in this
kit in the future, however patchingExitToShell()
does appear to have some drawbacks. It can cause prob-
lems when telling MacsBug to ‘es ’ after a crash in a
plug-in—it seems that REALbasic itself also patches
ExitToShell() when running applications, and so
only the application exits, not the whole REALbasic
IDE, which is left using a plug-in that has been destruc-
ted. As you might expect, this can cause more serious
crashes.

The technique of patchingExitToShell() also
causes some problems with Alfred Van Hoek’s excel-
lent Plugin Plunger ([7]) for examining REALbasic
plug-ins.

Consistent behaviour

To get behaviour (with respect to static constructors
and destructors) that while wrong, is at least consis-
tent between architectures, and balanced (don’t call a
constructor without later calling the corresponding de-
structor) you should modify the makefiles so that they
specify-init none -term none as arguments to
PPCLink. It should be emphasised that the only short-
coming of this kit in this regard is that it fails to call
static destructors for PPC plug-ins.

Older SDKs

With version 4.5a1, the REALbasic Plug-ins SDK be-
came much more compatible with MPW ‘out of the
box’. This means that many of the tricks needed to
get MPW to compile the old SDK are no longer nec-
essary. However, if you still need to use an old SDK
for some reason, the files in the ‘Deprecated ’ folder
may be useful. They work with SDK 4a1, but will likely
also be compatible with earlier versions. However, un-
less there is a compelling version to use an old SDK,
you should update to the latest version (4.5a2 at the
time of writing) and then you can safely throw away
the ‘Deprecated ’ folder.

The ‘Deprecated ’ folder contains the old make-
files and scripts for use with older SDKs. You should
fix the ‘SDK’ alias so that it points to the official SDK
folder, and ensure that ‘REALbasic ’ points to the RE-
ALbasic application folder.

In use, the deprecated makefiles work much the same
as the newer versions: simply change MPW’s work-
ing directory to the ‘Deprecated ’ folder and run the
scriptBuildPlugins.

Modifications to the old SDK

When you first build the example plug-ins from the
makefile ‘Examples.make ’ in the ‘Deprecated ’
folder, the kit automatically makes some small changes
to the files in the old REALbasic Plug-ins SDK to make
it compatible with MPW. This section will describe
those changes.

5

The changes are made by MPW’sStreamEdit, us-
ing the script file ‘ModSDKScript ’. I chose to take a
fairly ‘non-invasive’ approach, by making as few mod-
ifications as possible. Therefore, after adding a com-
ment to the top of the modified files, the changes are
only to#include my own header files.

These modifications will not have any effect on
CodeWarrior because they are protected by#ifdef
statements (and because the kit makes its own copy
of the modified files, leaving the originals untouched).
Each inserted line of code ends with a comment ‘//
--- mod PR ’ which you can search for to see the
changes.

The two modified files are placed in the ‘SDK.mod’
folder together with the two unmodified files from the
SDK, and this kit’s own files. The files copied from the
official REALbasic Plug-ins SDK are

PluginMain.cpp modified to#include the sup-
plied header file ‘ExtraMPWGubbins.h ’

REALplugin.h modified to #include the sup-
plied header file ‘ExtraMPWHeaders.h ’

rb plugin.h unmodified

RBCarbonHeaders.h unmodified

Changes to ‘REALplugin.h ’

‘REALplugin.h ’ is the file that each of the user’s
plug-in source files will normally#include . The
change made to it is to#include the header file
‘ExtraMPWHeaders.h ’, which in turn simply pro-
vides some standard headers from the Mac Toolbox.
The official SDK uses a precompiled header in Code-
Warrior for the same effect, but I chose not to use that
technique here for reasons of transparency.

Changes to ‘PluginMain.cpp ’

‘PluginMain.cpp ’ is the file that should contain the
main() routine for every REALbasic plug-in. Al-
though the changes to this file are accomplished sim-
ply by #includ ing ‘ExtraMPWGubbins.h ’, this is
where the significant compatibility issues arise.

If you attempt to build the unmodified SDK in MPW,
one of the first stumbling blacks you will find is that
‘PluginMain.cpp ’ #include s the CodeWarrior
header files ‘A4Stuff.h ’ and ‘SetupA4.h ’. How-
ever upon examination, these files do not actually have

any effect for non 68k builds. For instance, they pro-
vide EnterCodeResource() andExitCodeRe-
source() but for PPC builds these routines do noth-
ing at all!

Since this kit makes no attempt at building 68k plug-
ins (see the section ‘Limitations’), it gets round that
problem by providing its own files ‘A4Stuff.h ’ and
‘SetupA4.h ’, but leaving them intentionally blank
(other than a comment to that effect).

All of the interesting changes happen in the file
‘ExtraMPWGubbins.h ’. First, it checks that it is be-
ing used in a PPC or Carbon build and flags up an error
otherwise. Then, it uses the following code

#define EnterCodeResource()
#define ExitCodeResource()

to #define the routinesEnterCodeResource()
andExitCodeResource() as nothing, but so that
‘PluginMain.cpp ’ can still call them.

Static constructors

The SDK file ‘PluginMain.cpp ’ calls CodeWar-
rior’s sinit() routine frommain() . This is sup-
posed to call any static (e.g. global) constructors that
might be present, and it is provided by CodeWarrior’s
linker. Since we’re not using CodeWarrior, we could
use MPW’s equivalent, which isinit lib() . How-
ever, it is much better to make this the PEF initialization
routine, which happens automatically as long as we link
to the correct library (and don’t override it!).

Even so, the SDK (‘PluginMain.cpp ’) still calls
sinit() for PPC builds, so we must provide a ‘stub’

for it to call.
Although initialisation and termination routines work

fine for Carbon builds, there are difficulties with termi-
nation routines for PPC plug-ins. See the section ‘Lim-
itations’ for more information.

Distribution

This RB-MPW Plug-ins Kit is freeware, so it may
be used without charge, however it remains copyright
c©2002-3 by Peter Robinson. Please let me know if you

find it useful.
I would also like to hear any bug reports, comments

and suggestions, at<peter@pmpfr.co.uk> .

6

Version History

The current version at the time of writing is 1.1b3.

version 1.0b1 (4th May 2002)Initial release.

version 1.0b2 (5th May 2002)

• Slightly changed ‘BuildPlugins ’, to stop it compiling ‘PluginMain.cpp ’ repeatedly for every
plug-in. This should reduce the full build time almost by half.

• Tidied up and fixed the list of libraries to link against. I had stupidly commented out the library provid-
ing the PEF init/term routines in Carbon builds.

version 1.1b1 (11 July 2002)Updated for SDK 4.5a1.

• Now include makefiles for the new 4.5a1 SDK which is much more compatible with MPW ‘out of the
box’. Retained old makefiles in ‘Deprecated ’ folder.

• Now uses precompiled headers, controlled by the makefiles, to get around an outstanding bug in the
SDK.

• No longer necessary to modify the official SDK to compile, and no extra MPW headers are needed.

• Added a new project for the BoxControl and Test Plug-in examples in the SDK.

• Changed the makefiles to work from inside the SDK folder.

• Removed the PDF documentation from the main distribution to get its size down.

• Now uses a marker file to remember whether the dependency information has been generated yet.

version 1.1b2 (3 September 2002)

• Updated contact details.

version 1.1b3 (15 January 2003)

• Checked compatibility with SDK 5a1.

• Updated documentation describing the new plug-in file format. This kit still uses the old format.

• Tweaked the makefiles to generate slightly smaller files.

References

[1] This RB-MPW Plug-ins Kitcan be found at<www.pmpfr.co.uk> .

[2] My own CompfacePlugin, built with MPW,<www.pmpfr.co.uk/x-faces.html> .

[3] REALbasic, <www.realbasic.com>

[4] The officialREALbasic Plug-ins SDKis from
<www.realbasic.com/realbasic/about/plugins.html>

[5] Rok’s memo on making PowerePC REALbasic plug-ins using MPW,
<homepage.mac.com/rok/TechMemo/RBPluginAndMPW.html>

[6] Thomas Tempelmann’s ownPlugin Starter, <www.tempel.org/rb/index.html>

[7] Alfred Van Hoek’sPlugin Plungerapplication,<homepage.mac.com/vanhoek>

[8] Apple’s MacOS Runtime Architectures,
<developer.apple.com/techpubs/mac/runtimehtml/RTArch-2.html>

7

